Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration.

نویسندگان

  • David Kwong
  • John Covey
  • Amir Hosseini
  • Yang Zhang
  • Xiaochuan Xu
  • Ray T Chen
چکیده

We have investigated the feasibility of multimode polysilicon waveguides to demonstrate the suitability of polysilicon as a candidate for multilayer photonic applications. Solid Phase Crystallization (SPC) with a maximum temperature of 1000°C is used to create polysilicon on thermally grown SiO2. We then measure the propagation losses for various waveguide widths on both polysilicon and crystalline silicon platforms. We find that as the width increases for polysilicon waveguides, the propagation loss decreases similar to crystalline silicon waveguides. At a waveguide width of 10 µm, polysilicon and crystalline silicon waveguides have propagation losses of 0.56 dB/cm and 0.31 dB/cm, respectively, indicating there is little bulk absorption from the polysilicon and is the lowest propagation loss for polysilicon demonstrated to date. In addition, the first 1x12 polysilicon MMI is demonstrated with a low insertion loss of -1.29dB and a high uniformity of 1.07 dB. These results vindicate the use of polysilicon waveguides of varying widths in photonic integrated circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 3 12 even fanout using multimode interference optical beam

Introduction: Efficient optical beam splitters are a key component in photonic integrated circuits (PICs). Multimode interference (MMI) couplers have the advantages of compact size, low loss, stable splitting ratio, large optical bandwidth, and good fabrication tolerances [1, 2]. One of the major applications of MMI couplers is power splitters. To date, high performance in output uniformity is ...

متن کامل

Polysilicon photonic resonators for large-scale 3D integration of optical networks.

We demonstrate optical microresonators in polycrystalline silicon with quality factors of 20,000. We also demonstrate polycrystalline resonators vertically coupled to crystalline silicon waveguides. Electrically active photonic structures fabricated in deposited polysilicon layers would enable the large-scale integration of photonics with current CMOS microelectronics.

متن کامل

Material properties of tapered crystalline silicon core fibers

Crystalline silicon optical fibers are emerging as a promising platform for a wide range of optoelectronic applications. Here we report a crystallographic study of the material properties within silicon fibers that have been post-processed via a tapering procedure to obtain small, few micron-sized core diameters. Our results reveal that the tapering process can improve the polysilicon quality o...

متن کامل

Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integra...

متن کامل

On the Optimum Design for 1xN Multimode Interference Coupler based Beam Splitters

An analytical formula for optimum 1xN multimode input/output channel width is derived for improved performance based on the insertion loss and output uniformity. Experimental investigation of a SOI based 1x12 MMI confirms the analytical results. ©2010 Optical Society of America OCIS codes: (130.3120) Integrated optics devices; (130.2790) Guided waves

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 19  شماره 

صفحات  -

تاریخ انتشار 2012